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CONVECTION IN STARS1 
I. Basic Boussinesq Convection2 

E. A. SPIEGEL 

Astronomy Department, Columbia University 
Convection occurs somewhere in most stars, yet our lack of understanding 

of convection has not seemed a major impediment to progress in stellar 
structure in recent years. In part this is true because convection often 
achieves the idealized adiabatic limit that is expected in convective cores of 
stars. I t has also been true that uncertainties in the other physical processes 
in stars have been reduced considerably, and this has permitted a better 
empirical determination of the arbitrary parameters used in stellar convec
tion theory. Of course, there is always the possibility that things are not as 
satisfactory as one thinks. But if we take the optimistic view that present 
convective models are qualitatively reasonable, what can one expect of an 
improved theory? One desirable feature would be the prediction of convective 
transfer with, in addition, some reasonable estimate of the accuracy of the 
prediction. For this, a minimal but inadequate test is found in laboratory 
convection for which some quantitative data are available. Thus, a principal 
goal of stellar convection theory should be the development of a reasonable 
deductive theory whose reasonability can be minimally established by 
laboratory tests. 

Having obtained a theory at this level we would next be interested in 
finer details that characterize stellar convection. That is, we would like to 
be able to be quantitative about the time dependence and scales of the con
vection motion and to compare these with solar observations; we would 
like to know how far convection may penetrate beyond the regions of in
stability and by large-scale mixing remove chemical inhomogeneities; we 
would be interested in the precise temperature variations at the tops of 
convective envelopes to have better input for model atmospheres. And 
these are only a sample of some of the questions that one would hope to 
answer at this level of difficulty. 

There is, in addition, a series of dynamical questions which raise problems 
about the interaction of convection with other processes of stellar fluid 
dynamics. These bring in new instabilities and are probably the most in-

1 This work was supported in part by the National Science Foundation under 
NSF GP 18062. 

2 Part II, Special Effects, will appear in Volume 10 (1972) and Part III, Stellar 

Convection, will appear in Volume 11 (1973). 
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324 SPIEGEL 

teresting problems in stellar convection theory at present. Thus we would 
like to know when convection can stabilize or destabilize pulsation; we would 
like to understand the role of convection in the rotational history of the Sun; 
we would like, even in a primitive example, to compute the dynamo effect 
of rotation and convection from first principles. 

Before we can proceed to a discussion of what is known about these 
various processes, we need to have an outline of the basic theoretical tech
niques of modern convection theory, some of which involve prodigious cal
culations. For the most part, these techniques have been developed and 
tested on the basic problem of convection in a thin-plane layer of fluid. Ac
cordingly, Part I of this review is devoted to the problem of convective 
transfer in the laboratory situation. It should be stressed, however, that the 
equations and approximations used are the same as those now used in stellar 
structure calculations with a common goal-to predict the march of tem
perature through the convective fluid. It will be seen, for example, that the 
mixing-length theory as used in stars is not as complete as that now dis
cussed for laboratory convection. Other more difficult, but hopefully more 
adequate, approaches will be outlined. However, the astrophysicist inter
ested in a simple recipe for calculating stellar models will be disappointed to 
find that instead, the stellar structure calculation in these approaches con
stitutes a subroutine in the convection program, and not vice versa. There 
seems no way around this for the present. 

Having outlined these various approaches here, we shall return in the 
next volume of these Reviews to their application to the problem of stellar 
convection. In Part II the special problems of stellar convection such as 
large density variation, overshooting, rotation, and radiative transfer will 
be considered in the con text of pure convection theory. I t is in these domains 
that the more involved methods, especially those of Section 8, can be used 
to advantage, though one would not wish to pursue them without first ex
amining their suitability for the basic problem of convective transfer. Part 

III is then to be devoted to actual stellar convection and the understanding 
of it that can be drawn from the discussion of Part II. 

I t is hardly necessary to add that even the limited subject matter of 
Part I cannot be treated exhaustively in the space available here. Hence, 
the discussion is focused on approaches that seem to have a direct bearing 
on the problems of stellar convection. Since the literature is vast, no attempt 
is made to cover all the contributions from meteorology (Sutton 1953, 
Priestley 1959), engineering (Prandtl 1952) and other fields where convec
tion plays an important role. Also, reference is often made to papers which 
adequately summarize or synthesize previous work, and fundamental papers 
covered in such discussions are not necessarily cited. Particularly helpful is 
the thoroughness of existing treatments of linear theory (Chandrasekhar 
1961), and the existence of a recent gcneral review of the subject (Brindley 
1967), in addition to some less complete ones by the present author (Spiegel 
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CONVECTION IN STARS 325 
1966, 1967). An interesting discussion of the overall spectral dynamics of 
convection is also available (Platzman 1965). 

1. TUE EQUATIONS OF CONVECTION 

1.1 The anelastic and Boussinesq approximations.-Though it would be 
out of place here to go into mathematical details of convection theory, it is 
necessary to discuss the basic equations, since much of the language of the 
subject stems from them. However, it does not pay to write down the full 
equations, since no attempt seems to have been made to solve them, except 
in linear theory. It is more usual to begin at the outset by introducing ap
proxima tions. 

The approximation that seems most appropriate for astrophysical con
vection is the ane1astic approximation familiar to meteorologists (Ogura & 
Phillips 1962, Gough 1969). The basic idea of this approximation is to filter 
out high-frequency phenomena such as sound waves since these are thought 
to be unimportant for transport processes. This approximation is not really 
valid in the outer layer of convective envelopes or red giants, for example, 
since the Mach numbers of the convective motions can become appreciable 
there; but since even the anelastic problem has not been solved for that 
case, little can be said of this difficulty. 

In studying laboratory convection, a further approximation is permitted, 
namely that the vertical extent of the fluid is much less than its density or 
pressure scale heights (Spiegel & Veronis 1960). This does not mean that the 
fluid is incompressible, but it does imply that density variations are very 
small and permits other such simplifications (Mihaljan 1962, Malkus 
1964). This approximation combined with the anelastic approximation 
leads to the so-called Boussinesq approximation which is used in studies of 
laboratory convection, meteorology [sometimes with other justifications 
(Dutton & Fichtl 1969)], and even (implicitly) in most calculations of stel
lar convection. It often is further assumed that material properties such as 
viscosity and conductivity are insensitive to temperature; that is not an 
essential part of the Boussinesq approximation, but this "strong" form of the 
approximation is adequate for many experiments. Further, the principal 
configuration studied is that of a plane-parallel layer of fluid oriented hor
izontally in a uniform gravitational field, and that example will serve here. 

1.2 Mean quantities.-In a convecting fluid, and especially a turbulent 
one, it is convenient to separate the mean and fluctuating parts of variables 
such as pressure and temperature. The means should ideally be ensemble 
averages, but it is computationally more convenient to use means over 
horizontal surfaces. Thus, one writes for the temperature in the plane
parallel case, 

T(x, t) = T(z, t) + 8(x, t) 1.1 
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326 SPIEGEL 

where z is the vertical coordinate and 0=0. In the idealized problem of Part 
I, ii = 0 where u is the velocity. 

When horizontal means are taken of the Boussinesq equations there 
result (Spiegel 1967) 

and 

a _ 

- (ft + pw2) 
iJz - gp 

a _ a _ afT 
-T+-wO=K
at az az2 

1.2 

1.3 

Here p is the density (assumed constant), p is the pressure, g is the accelera
tion of gravity, w is the vertical component of u, and K is the thermal dif
fusivity (molecular or radiative). These two equations are the Boussinesq· 
versions of two of the basic equations of stellar structure theory. The pw2 is 
the turbulent pressure and wO is the convective flux. If these two terms 
could be simply evaluated in terms of mean quantities, the convective dif
ficulties of stellar structure theory would be essentially overcome, since a 

reasonably simple set of equations would result. No such possibility is 
readily found from the equations for u and 0 (which will be displayed below). 
Indeed, it is clear from looking at the full equations that static structure 
equations like 1.2 and 1.3 make up one of the least difficult parts of the 
convection problem. 

1.3 The Boussinesq equations.-In writing the equations of motion it is 
advantageous to use natural units appropriate to the problem. Thus we take 
the vertical extent of the fluid d as the unit of length, d2/K as the unit of time, 
where K is the thermal diffusivity, p as unit of density, and tlT-gd/Cp as 
the unit of temperature, where tlT is an imposed temperature difference 
across the fluid, g is the acceleration of gravity, and Cp is the specific heat at 
constant pressure. The term gd/ Cp is the adiabatic temperature change 
across the layer and meteorologists would call tlT -gd/ Cp the change in 
potential temperature (Brunt 1939), but astrophysicists prefer to work with 
entropy. 

In natural units, the equations for the fluctuating quantities are (Malkus 
& Veronis 1958) 

1 (au ) 
- -+u·Vu 

(J at 

ao (aT) _ - + w - - (3A + u· VB - u· VB = V2B 
iit iiz 

1.4 

1.5 
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CONVECTION IN STARS 

V'U = 0 
wherek is a unit vector in the vertical, TU = (p-p)/p-w2, 

gexd3 ( gd) R= -- llT-- , 
KV Cp 

U = V/K 

327 

1.6 

1.7 

are known as the Rayleigh and Prandtl numbers, and ex is the coefficient of 

thermal expansion. 
These equations are completed with the addition of 1.2 and 1.3, but the 

former is not really essential for the Boussinesq case. Moreover, 1.3 can be 
simplified by adopting the widely held belief that under stationary external 
conditions mean quantities are also stationary, at least in turbulent con
vection. In that case, 1.3 can be written, in natural units, as 

_ aT 
w()- - = N  

az 
1.8 

where the Nusselt number N is. the (constant) sum of the convective and 
conductive heat fluxes. If the Boussinesq approximation had not been made, 
additional terms representing acoustic flux and transport due to viscous 
stresses would be required, though such effects are usually ignored in stellar 
convection as well. 

To these equations must be added boundary conditions (Chandrasekhar 
1961). In experimental studies the attempt is often made to fix the boundary 
temperatures, hence 9=0 on the boundaries. On rigid boundaries, u=O, and 
on free boundaries w=O and the tangential stresses vanish. The conditions 
appropriate to free boundaries are often used in theoretical work even when 
they do not apply, since they are easier to work with. 

2. STABILITY THEORY 

Convection as we are considering it here normally arises as an instability 
which grows on a previously static configuration. In the simplest case, where 
a perturbation of infinitesimal amplitude does not suffer thermal diffusion 
or viscous effects, the question of stability can be decided simply. A parcel 
of fluid displaced vertically and adiabatically suffers a change in energy by 
an amount mCpdT+mgdz where m is the mass of the parcel. If this change 
is negative, that is if 

dT 
d; < - g/C» 2.1 

we can expect instability. This criterion, called the Schwarzschild criterion, 
can be obtained by more rigorous methods (Lebovitz 1966, Kaniel & Kovitz 
1967). 
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328 SPIEGEL 

When dissipative effects on the perturbation are included, the problem 
of stability is more difficult but precise treatments are available (Chandra
sekhar 1961). An infinitesimal perturbation is applied to a given static con
figuration. For the initial times at least, the equations of motion are then 
linear, with constant coefficients in the strong Boussinesq approximation, 
and they are then separable. In the plane-parallel case solutions of the form 

w(x, t) = lex, y)e�tW(z) 2.2 
for w, are found with similar forms for the other variables. Here 

2.3 

and 7] and a are separation constants representing the growth rate and 
horizontal wavenumber of the perturbation. Solutions of the resulting 
eigenvalue problem can be found giving 7J as a function of R, u, and a. If for 
given R and u there exist solutions with Re(7J) >0 for some a, the solution 
is unstable. If for Re(7J) � 0 we have Im(7J) �O the instability is called over
stability or vibrational instability. If lni(7]) =0 whenever Re(7]) �O, the 
principle of the exchange of stabilities is said to hold. For the linearized 
form of 1.4-1.6 this principle has been established. If we set 7] = 0 in the 
separated linear equations they give a relation defining the condition for 
marginal stability. As can be seen by inspection, 0" drops out of these equa
tions and we are left with a relation between R and a, having the properties 
R-+ 00 for a-+O and a-+ 00. Thus R has a minimum value R" at a particular 
a =ac, which implies that for R>R" there is a band of a for which there exist 
7]>0. We conclude that for R>R" convection occurs. For rigid boundaries 
the values R,,=1708 and ac=3.1 are found. A physical discussion of these 
results suggests that the Rayleigh number may be interpreted as the ratio 
of buoyancy force to viscous force on the perturbation (Spiege1 1960). 

Now stability is much harder to establish than instability, since it is not 
always possible to test all possible perturbations. For the present elementary 
example of convection it has also been shown that for R>Rc there are no 
positive 7], but this is not always the case in more complex problems, and 
overstability may arise if stabilizing forces work against the convection. 
The overstability then may occur at R< R.: in the sense that Rc is defined 
here. 

Further, some of the more complicated configurations, though stable in 
the sense used here, may be metastable. That is, if perturbations of suf
ficient amplitude are introduced, the system does not return to its initial 
configuration. In fluid dynamics a metastable system is said to exhibit finite 
ampli tude instabili ty. Systems that exhibi t overstabili ty often are metastable 
as well and several examples will arise in Part II. 

. 

These various possibilities are discussed here to make clear that the 
example we are considering is special in that instability occurs only as ex-
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CONVECTION IN STARS 329 
ponential growth when R>Re (Sani 1964). But it should also be stressed 
that when the fluid is unstable there is in general an infinitude of stable 
modes lying in a continuous band of horizontal wavenumber u. A further 
degeneracy is that associated with the various possible 1's that satisfy 2.2 
(Bisshopp 1960). 

3. EXPERIMENTAL RESULTS 
Most of Part I of this review consists of discussion of various attempts 

to understand Boussinesq convection and in particular to find how N de
pends on Rand u. Some astronomers do not consider that this topic is neces
sarily relevant to stars since the Boussinesq approximation does not hold 
in stars. However, as noted in Section 1, the Boussinesq equations are a 
limiting case of the equations governing stellar convection. Thus, any 
scheme for solving the equations of stellar convection should also work in the 

Boussinesq approximation or be subject to grave doubts. Whether a method 
does work in this limit can be tested only by experiment (good numerical 
experiments may have to suffice) over as wide a range of parameters as pos
sible. Of course, such checks do not by any means guarantee the validity of 
a stellar convection theory, but they consitute a basic and fairly exacting 
requirement. Moreover, as we shall see in Section 8, the mixing-length 
theory now used for stars is a Boussinesq theory. 

The onset of convective motions at a critical value of R is well estab
lished; the measured critical value is usually within 3% of that given by 
stability theory or better (Thompson & Sogin 1966) and, as theory predicts, 
R. is independent of u. For R just above Re, steady cellular motion is ob
served for CT;::::. 7 and if enough care is taken, the motion is steady and occurs 
in two-dimensional patterns called rolls. The widely quoted remark that 
hexagonal patterns occur in steady convection is not borne out by modern 

experiments, except under special circumstances, as when the fluid has 
properties which are temperature dependent and the strong Boussinesq 
approximation is not valid (Tippleskirch 1956). The wavenumber of the 
rolls decreases as R increases (Koschmieder 1966, 1969, Krishnamurti 1970) 
with a rate which depends on CT but for which no simple experimental rela
tion has as yet been given; this behavior has been attributed to the side 
boundaries (Davis 1968), but recent numerical experiments without side
walls show this behavior (Lipps & Somerville 1971). The pattern of the 
motion changes when R is raised above 22,600 (for u � 1) and becomes three
dimensional. The preferred form then seems rectangular, and probably con
sists of crossed rolls (Busse 1970, Busse & Whitehead 1971). Such steady 
patterns persist to Rayleigh numbers ",5 X 104 when the motion becomes 
time dependent, but periodic. Finally at higher values of R(> 106) the motion 
becomes aperiodic, and with even higher R it probably becomes turbulent if 
(f is not too large. The various transitions in the nature of the flow are cur
rently the object of intense interest (Krishnamurti 1970, Willis & Deardorff 
1967a, h, c; Chen & Whitehead 1968). 
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330 SPIEGEL 
These results have been obtained for 0'�1. For 0'< 1 the data are too 

sparse to permit any real conclusions but the various transitions appear to 
occur at rather reduced values of R (Krishnamurti 1970). (In laboratory 
fluids typical values of u are : for silicone oils»l, for water = 7, for air=.7, 
for mercury::::: .025, for liquid sodium = .005.) What is remarkable is the 
marked change in behavior that occurs in the neighborhood of 0'== 1. In par
ticular for air, transition to time-dependent convection already occurs at 
R = 5 X 103, before the transition to three-dimensional motion (Willis & 
Deardorff 1970). For mercury, steady motion is not found at all (Rossby 
1969). 

The kind of experiment that seems easiest to use in checking astrophysi
cally oriented theories is the measurement of the heat transfer, or equiv
alently the N usselt number, for different values of R and IT. Of course, the 
R and IT typical for stellar convection are not really accessible experimen
tally; in the Sun, for example, R is about 1012 to 1020 (depending on whether 
one takes d as a scale height or the depth of the convective zone and on how 
one chooses the other parameters) and 1T",1O-9 because the thermal diffusion 
is radiative (Ledoux, Schwarzschild & Spiegel 1961). Nevertheless, one 
should try to push to the highest possible R and the lowest possible IT ex
perimentally to provide data for testing theories as stringently as possible. 
At present, the data are inadequate to really discriminate among various 
theories, but let us consider what information is available. 

In general, the measured heat fluxes through a convective layer are 
steady in time. Thus the N usselt number defined in 1.8 is a constant and one 
writes 

3.1 

where J is the heat flux divided by pCp. Since the only parameters in the 
equations are R and IT, the assumption that N depends only on them is 
quite reasonable, though any failure of the theoretical boundary conditions 
to match the actual ones and any deviations from the strong Boussinesq 
approximations may spoil this simple functional form. 

For R :5:�, N = 1, since convection does not occur. (Exceptions may 
arise when the fluid is metastable for R :5: Rc.) The slope of the curve of N 

vs R (for fixed IT) breaks from N= 1 at R=R. and N begins to increase with 
R (e.g. Rossby 1969). A remarkable feature of the experiments is that N is 
only a piecewise smooth function of R, and a series of breaks in the N-R 

curves are observed (Malkus 1954b, Krishnamurti 1970, Willis & Deardorff 
1967b). The transitions are discontinuities in dN IdR like the one which 
signals the onset of convection, but the relative jumps are increasingly small 
as R increases. No transitions have been reported for R>S X 106• One sug
gested explanation of the transitions is that they mark the onset of new 
modes of motion (Malkus 1954a) which become unstable in the convectively 
altered conditions of fluid. Another possibility is that some of the transitions 
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CONVECTION IN STARS 331 
represent the occurrence of new interactions among the already existing 
modes. 

Most attempts to describe the measurements of N are based on the in
terpolation formula 

N = ARrCT, 3.2 
and experimentalists quote measured values for A, r, and s. Although the 
quoted uncertainties in several experiments are reasonable, there are some 
uncomfortably large differences among values given by different experi
mentalists in A, r, and s, and, less often, in the actual values of N itself. Part 
of the trouble in the experiments is that heat leaks out of the sides of the 
apparatus and the correction for this is uncertain. Another experimental 
difficulty is that to raise R and maintain the strong Boussinesq approxima
tion one must raise d. To keep the same aspect ratio one must then increase 
the horizontal dimension of the apparatus. The result is a large volume of 
fluid which is thermally sluggish; such systems take long times to come to 
equilibrium and are hard to maintain at given boundary temperatures. 

Yet another problem relates to data analysis: different workers fit 3.2 
to the data in different domains of R, and if r has a weak R dependence, 
discrepancies are inevitable. Of course, if r depends on R this may imply that 
3.2 is inadequate, but there are theoretical approaches suggesting that 3.2 
works well in certain well-defined domains of R. If data which spread over 
more than one of these domains are fitted to 3.2 the results may be mislead
ing. A careful analysis of these points is lacking. 

Given these uncertainties we may note some trends in the data. The 
general impression is that above R---5 X 10·, for CT> 1, there appears a marked 
but continuous increase in the upward variation of N with R. No data for 
R>3X109 seem available and for data in the range 5X105 to 3X109 the 
reported values of r range from 0.200 to 0.325 with quoted probable errors 
± .005 (Goldstein & Chu 1966, O'Toole & Silveston 1961, Rossby 1969, 
Sommerscales & Gazda 1969). The values of A associated with these ex
tremes are from about 0.2 to 0.08. The most reliable estimates for r seem to 
be 0.30-0.33. 

These differences may partly be due to Prandtl number dependence, 
since the value r = .283 was found in silicone oil (CT---20) (Sommerscales & 
Gazda 1969) and .325 in acetone (CT=3.7) (Malkus 1954a). Other data seem 
consistent with this possibility: for example in one experiment (Rossby 
1969) r = .30 ± .005 and A = .13 were found for water (CT= 7) using data down 
to R=4XI03• However, limited attempts to find s suggest that it is small 
for CT 2: 1 (O'Toole & Silveston 1961), hence one picture that might be con
sidered for CT> 1 is that s",O but A and r depend on CT in some transcendental 
way. An alternative interpretation is that the domain of R in which 3.2 is a 
good representation depends on CT and the apparent variation of A and r 

with CT is a result of fitting 3.2 to the data in inappropriate domains. This 
possibility is also implied by data for R< 5 X 105 which give lower values of 
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r (.25-.28) (Rossby 1969) , and it may be true that the inclusion of data from 
lower values of R may depress r. A conclusion widely drawn from these data 
is that when R becomes large enough, N � Rl/3j this is in keepmg wlth an 
older suggestion that for R;S5 X 105, N � Rl/4 and for R 2: 105, N � Rl/3 
(Jakob 1946) . The modern data do not permit such a simple picture in de
tail, but support it qualitatively. 

For (J' � 1, it appears that N drops with (J' more discernibly than at higher 
(J'. Data on this point are available only for air (0' =.7) and mercury (0' = .025) 
and a definitive statement on the value of s or on possible (J' dependence of 
N or r cannot yet be made. 

The experimental information about N thus seems uncertain in all re
spects. Even the most recent measurements of N differ between experimen
talists by 10% or more at the same R and o'. This level of uncertainty is 
far greater than is found in calorific measurements in modern physics and 
there is a definite need to increase the quantity and accuracy of data on con
vective heat transport. This would seem a useful subject to include in pro
grams of laboratory astrophysics. 

Another kind of measurement which has been made in some detail is of 
r(z) (Goldstein 1964; Rossby 1969, Sommerscales & Gazda 1969, Thomas 
& Townsend 1957, Townsend 1959, Willis & Deardorff 1967c) . At large R 
it is found qualitatively that r is nearly constant away from the boundaries; 
near the boundaries r varies rapidly with z. (A variation in Tr-.;gd/ Cp 
would be hard to detect in the laboratory.) From 1.8 and the boundary 
conditions, it is clear that -aT laz = N at the boundaries, simply because 
the convective flux vanishes there. But, as to further details about T, dif
ferent experimentalists do not agree. Some results indicate that T is not 
symmetric about the midplane of the layer but others do not. The equations 
are invariant to reflection through the midplane but this does not neces
sarily imply that T is symmetric, since solutions may occur in asymmetric 
pairs. The different results may have to do with variations in experimental 
setup, non-Boussinesq effects, different measuring techniques (which mix 
some of (J into r), different averaging times, and differing states of motion. 

An interesting feature found in the experiments is that T is not always 
monotonic. In particular, there are often bumps in T just inside one or both 
of the thermal boundary layers (Sommerscales & Gazda 1969). These bumps 
are not universally accepted, but their existence now seems quite likely. 

Other aspects of the motion, such as 02, are measured and other various 
external effects, such as rotation, have been studied. Many of these will be 
discussed in Part II. 

4. CALCULATIONS FOR MILDLY SUPERCRITICAL R 

If R is just above the critical value R. for the onset of convection, there 
are straightforward analytical and numerical techniques for finding solutions 
of the basic equations (Joseph 1966, Kuo 1959, Kuo & Platzman 1961, 
Malkus & Veronis 1958, Schliiter, Lortz & Busse 1965, Segel 1966, Stuart 
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CONVECTION IN STARS 333 
1958). Though this topic (known as finite amplitude theory) is the most 
active and successful branch of convection theory, it is not directly helpful 
to astrophysicists because in stars R»Re in general. Nevertheless, even in 
discussing what happens at high R, solutions at low R may give a qualitative 
lead, and a brief outline of the topic is in order here. The remaining sections 
on theories will then be devoted to large R. 

The usual analytic technique often used when R-Re is small is a version 
of degenerate perturbation theory. The basic assumption is that for R 
slightly above Rc the motions will develop only small amplitude and a per
turbation expansion in amplitude is made. Thus one writes u =ruo+E2Ul 
+ ... , 8=e80+e2lh+ ... , where Uo and 80 are normalized functions and 
the amplitude E is assumed small. Though in convection problems it is 
usually assumed that R is prescribed, it is not known in advance which 
value of R will produce a particular amplitude. It is convenient therefore 
to consider E as given and to find the R required to produce it; thus R can 
be thought of as a function of E and we can write R = Ro+ERl + . . .  , with 
the understanding that this relation can later be inverted. 

The leading terms in the expansion give the linear equations of stability 
theory. These are degenerate since an infinity of choices of the wavenumber 
a and the horizontal planformj can be made (cf Equation 2 .3). The problem 
is usually restricted by choosing the solution at this stage to be one of the 
marginally stable solutions of linear theory, though recent work has been 
directed at time-dependent cases (Matkowsky 1970). Having made this 
choice one goes on to higher orders using known techniques of perturbation 
theory to suppress resonances. The expansions have been carried to high 
order, and are convergent (Lortz 1961); solutions good to R�10Rc or more 
are now routinely computable. 

In the expansions carried out thus far, the linear solution which is per

turbed is taken to have a single, fixed horizontal wavenumber a and fixed 
planform. Since this linear solution is marginally stable, Ro is the value of 
R that produces.marginal stability. If Ro were much greater than Re, there 
would exist values of a corresponding to highly unstable modes at R = Ro, 
and these would grow to large amplitude and overwhelm the solution studied. 
Hence, a must be selected so that Ro is near to Re. In the case of the strong 
Boussinesq approximation, one finds Rl = 0, thus E ex: (R -Rc)1/2, which iden
tifies the perturbation parameter E in terms of the usual known q uan ti ties. 

Solutions for a variety of planforms having been found, the question 
arises which is preferred in nature. To answer this, the stability of the solu
tions has been studied by the same techniques used to find them. The work 
is most complete for the case (J'--'>OO (Busse 1967a). In that limit the only 
known stable solutions are the two-dimensional rolls in a finite band of a, 
and even these become unstable at R = 22,600. This instability represents 
excellent agreement with experiments which show that the motions do 
become three-dimensional at a value of R close to 22,600, but the theory 
does not predict the wavenumbers of the observed rolls. Also the experi-
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ments show the existence of steady three-dimensional motion for R>22,OOO 
and a challenge to the theory is to find a corresponding stable three-dimen
sional nonlinear solution. The observed cells have a rectangular appearance 
but theoretical rectangular planforms do not seem to be directly related to 
observed cells (Stuart 1964) and the motion probably consists of two inter
acting modes (Busse 1970, Busse & Whitehead 1971). 

5. DIMENSIONAL ARGUMENTS 

A powerful way to test ideas about convective transfer is to combine 
them with dimensional analysis to obtain the dependence of N on R and of 
T on z. There are two simple, but divergent, arguments about the form N 
should take, and they are worth outlining here. 

The first argument stems from the observation that in highly developed 
convection at large R, T follows the adiabatic gradient over the bulk of the 
fluid. At the boundaries, according to 1.8, aT /dz = - N, where N is a rather 
large number. For the case of fixed boundary temperatures, T must there
fore change by an amount (/:l T - gdl Cp) in the thermal boundary layers 
near the walls. The total thickness of the layers is then ",diN. We may 
conclude that the ability to conduct heat into the main body of the fluid 
from the boundary layers is the limiting factor in fixing the heat transport 
and thus the structure of the boundary layer fixes N. 

If this is true, what is the effect of changing d? One line of argument is 
that for highly active convection, a change in d should not affect the heat 
flux J, since it would not modify the boundary layers but merely increase 
the size of the intervening adiabatic region (Priestley 1954). Application 
of this argument to 1.7, 3.1, and 3.2 gives 

N = ACTBRI/3 5.1 
which is not incompatible with experiments at their present level of 
accuracy. 

No information on Prandtl number dependence is provided by these 
arguments. But in stellar cases, where CT «1, astrophysicists generally agree 
that the heat flux should not depend on viscosity, which implies that s = r 
in 3.2 when 0'«1, i.e. N = N(RO'). There is no experimental evidence directly 
supporting this conjecture except for the observed decrease of N with 0'. 

Other theoretical arguments to be mentioned later also support this. 
The other dimensional argument for the dependence of N or R comes 

from the formulation of methods used in stellar structure in the language 
of laboratory convection (Spiegel 1971a). Convection in stellar cores is treated 
as if the convective cores were completely adiabatic with no boundary or 
transition layers intervening between the convective regions and the radia
tive envelopes. The neglect of such layers implies that for the convective 
cores no uncertainty exists in the choice of the correct adiabat. It also as
sumes that whatever the luminosity of the model, the convective flux re
quired will be carried without the limitation implied by the existence of a 
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boundary layer with dominant conductive transport. Of course, stellar 
models are less constrained than laboratory models, since their dimensions 
are adjustable; nevertheless such physical requirements placed on the 
models are exacting and it is of interest to see what they imply. This is simple 
to do; if the convective zone is purely adiabatic the heat flux must be in
dependent of thermal conductivity. This, taken with the previous conclusion 
that N = N(RO") for low 0", gives us 

N = A(Ru)1/2 5.2 

if we demand that Equations 3.1 and 3.2 imply that J is independent of K 

and v. 

The difference between 5. 1 and 5.2 (even with s=1/3 in 5.1) is quite 
striking and its resolution is important to the theory. One possibility is that 
the stellar arguments should not be applied to the laboratory configuration. 
If that is true, then an important point of contact is lost between the two 
cases. However, other lines of argument which permit us to resolve the dis
crepancy between 5.1 and 5.2 will be given below. What is suggested by 
these arguments is that at sufficiently high R, turbulent breakdown of the 
thermal boundary layer occurs and causes a transition from 5. 1 to 5.2. No 
such transition has been detected experimentally, but this is presumably 
explained by the limitation of the experiments to what in stellar terms are 
modest Rayleigh numbers (Rf'V109). The need to confirm (or deny) 5.2, 
which is intimately connected with basic ideas of stellar structure theory, 
poses a great challenge to the experimentalist. 

Apart from these results, there have been attempts to discuss the struc
ture of convective turbulence on the basis of similarity arguments (Zel'do
vich 1932, Priestley 1959). Conclusions drawn about T(z) in this way do 
not seem to agree well with experiment (Townsend 1966). 

6. BOUNDS ON THE HEAT TRANSPORT 

Integration of 1.8 over z leads to the expression 

N = 1 + (w8) 6.1 

where the angular brackets denote a volume average. We may then apply 
the calculus of variations to this functional expression to place bounds on 
N which, if they are stringent enough, may be a useful guide in selecting 
among various theoretical results. The value of such bounds will evidently 
depend on the constraints added to the variational problem. 

One set of constraints that has been used are the so-called power integrals 
(Malkus 1954b, Sorokin 1957, Chandrasekhar 1961). These are obtained by 
scalar multiplication of 1.4 by u and of 1.5 by 8 followed by averaging over 
the fluid volume. If mean quantities are steady there result 
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and 

6.3 

The first of these expressions balances the rate of buoyant input of energy 
against the rate of viscous destruction; the second can be similarly thought 
of in terms of entropy generation. Neither of these conditions involves the 
Prandtl number. 

Subject to 6.2 and 6.3 as constraints, the expression 6 .1  for N can be 
maximized (Howard 1963) and it has been shown that 

v'3 
N < _ Rl/2 

- 8 

This bound shows an intriguing similarity in R-dependence to 5.2, but for 
<1«1 it is much higher than 5.2. Attempts to further tighten this bound by 
the addition of 1.6 as a constraint (Busse 1969) have only modified the nu
merical coefficient in front of R l /2, but the solutions of the Euler-Lagrange 
equations that then result are probably better representations of the actual 
flow. 

Another bound has been found by replacing the constraint 6.2 by 1.4 in 
the limit <1-+ 00 and retaining 6.3 and 1.6 (Chan 1971). This gives N ::;.325 
Rl/a and suggests that for large enough <1, 5.2 cannot be correct. Thus, if as 
demanded by the astrophysical arguments, 5.2 holds for 0"«1, at fixed, large 
R, N should increase with increasing IT. At some unknown finite value of IT, 

N(<1) should reach a maximum, O(Rl/2), and then decrease with increasing IT 

to an asymptotic value ::; .325 Rl/a. 
It seems technically feasible to derive similar bounds (though not with 

the same rigor) for astrophysical (non-Boussinesq) circumstances. However, 
the effort does not yet seem warranted. What is needed more is improvement 
of the bounds at low values of IT. Bounds for this case have been estimated 
by physical arguments (Spiegel 1971a), which are really dimensional, and 
which agree with 5.2. Analogous rigorous bounds have not been found, pos
sibly for want of effort. However, there is another conceivable limitation on 
the closeness with which the bounds may approach the actual fluxes. 

Suppose that the equations admit solutions to which correspond inor
dinately large heat fluxes, but that these solutions are unstable. Then it 
could happen that fluxes found in practice would be much lower than for 
these solutions but that rigorous mathematical bounds would not be. This 
difficulty might be circumvented by the use of ensemble means over many 
solutions or by an appropriate constraint; but the problem would be difficult. 
Such knotty problems notwithstanding, the establishment of further bounds 
would be helpful, especially on other quantities besides flux, such as the po
tential energy, or kinetic energy, of the fluid. Other less obvious quantities 
have been considered too (Busse 1967b). 
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7. Two-DIMENSIONAL SOLUTIONS 

Naturally, one might try to solve the equations numerically, but even 
with the largest machines, complex flows in three dimensions have not been 
successfully treated except for R not much larger than Re. In this region of 
low R « 10 Re) the three-dimensional time-dependent solutions evolve 
slowly to two-dimensional solutions, in confirmation of laboratory results 
(Chorin 1968). This does not mean that three-dimensional numerical cal
culations are not useful at low R; it turns out that if a two-dimensional flow 
wishes to adjust its horizontal scale, it does so through the action of three
dimensional perturbations (Lipps & Somerville 1971). 

However, if the flow is two-dimensional, the Boussinesq equations can 
now be fairly routinely solved for R up to about 106 (Deardorff 1964, Fromm 
1965, Plows 1968, Schneck & Veronis 1967, Somerville 1970, Veronis 1966), 
and no doubt these results can be pushed to higher values if adequate spatial 
resolution of the boundary layer can be achieved. 

Such numerical calculations do not avoid the need to introduce a length 
scale in the horizontal direction since a finite horizontal dimension is required. 
Another limitation of two-dimensional solutions is that they do not seem to 
develop full turbulence. For reasons that are probably associated with this, 
the two-dimensional results show very little dependence on (J and hence are 
not directly useful to astrophysics except as a possible check on other theo
retical approaches. Some (J dependence may be introduced by allowing the 
horizontal scale of motion to take its preferred value (Lipps & Somerville 
1971), but the two-dimensional solutions have no way of determining this 
scale. 

An especially interesting aspect of the two-dimensional problem is that 
asymptotic solutions for R- 00 have been obtained. These provide, apart 
from the static solution without convection, the only accurate solutions of 
the convection equations for large R. At large enough R, these are doubtless 
unstable, but they are of theoretical interest. In addition to having the kind 
of vertical structure in T already discussed, they have thin vertical "boun
dary" layers as well. For example in a horizontal line in the plane of the mo

tion, T will be constant except for sharp bumps at the edges of the two
dimensional rolls. The vertical velocity is likewise concentrated in vertical 
layers. 

For (J»R3f5 the result N <X Rlf5 is obtained (Roberts 1969) and N <X a2f5 for 
a�l where a is the inverse horizontal scale that must be supplied to obtain 
a solution. For (J«R3f5, the result N<x Rlf4 is obtained (Wesseling 1969) but 
the (J dependence has not been given for this case. Also the corresponding 
flow exhibits separation in ceIl corners and this probably indicates insta
bility. These results (RI/5 and Rl/4) hold for rigid boundaries. For free 
boundaries one finds N<x Rl/S with very little (J dependence (Roberts 1969). 

The analytic and numerical results (Veronis 1966) coincide in their lack 
of (J dependence. As we have mentioned, this limits their astrophysical value 
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to tests of other techniques of solution or in exploring qualitative problems 
such as density variation. It is, however, becoming increasingly reasonable to 
think of solving three-dimensional problems even in the region of turbulent 
convection (Orszag 1969). Though this may be premature for the astrophys
ical case, it is a possibility that should be kept in mind in the coming decade. 

8. MIXING-LENGTH THEORY 

Most theories of convection consist of attempts to solve the basic equa
tions in some approximation. Little effort has been made to bypass direct 
solution by constructing models for the flow which may lead to simpler equa
tions (though some very interesting models for time-dependent convection 
exist (Chang 1957, Howard 1965, Keller 1966, Welander 1967, Elder 1968) . 
A notable exception to this remark is the mixing-length theory which pic
tures turbulent transport processes in analogy with molecular processes 
(Taylor 1970, Prandtl 1952). A characteristic mixing length t, analogous to 
the mean free path of kinetic theory, and a characteristic turbulent velocity 
u', analogous to the mean molecular velocity, are introduced (e.g. Sutton 
1955). Various formulations of the theory are possible, but the simplest is to 
introduce a turbulent diffusivity, or Austasch coefficient, lu', to be used to 
describe the turbulent transport processes. This part of the theory is reason
ably clearj the choice of t and u' is more difficult. The random velocity u' is 
often taken to be of the order of some large-scale velocity in the fluidj in con
vection this is the vertical velocity w. The mixing length is taken to be a 
characteristic scale which is sometimes a constant such as the size of the sys
tem. More usually it is assumed to be a local scale such as the distance to a 
boundary or the scale of variation of a dynamically important quantity, such 
as velocity, shear, pressure, or density. These choices imply a slight inconsis
tency since the transport is described as a diffusion, using the approximation 
that I is less than any characteristic scale of motion (Spiegel 1963). 

The equations describing the mixing-length model are just 1.4, 1.5, and 
1.8 without the u ·Vu and u 'V(} but with terms added to account for the 
turbulent diffusion. In the simplest case, the same diffusion coefficient wI is 
used for all quantities such as temperature and velocity, though it may be 
more correct to consider different values of 1 for different quantities. This 
is done in other problems such as vorticity diffusion (Goldstein 1938). 

Even the relatively simple mixing-length equations are difficult to solve 
and, in view of the drastic approximations involved already, perhaps the 
effort needed to find exact solutions is not called for. Hence further mathe
matical approximations are usually introduced. In oceanography, for ex
ample, one often sets wI constant. In the astrophysical examples, one typi
cally replaces most spatial derivatives of fluctuating quantities by Z-lj for 
example 'V"",Z-2 (Kraichnan 1962). An equivalent way to obtain such results 
is to be more explicit about the model itself and to picture the turbulent 
transport as being effected by parcels of fluid of size I before disruption 
(Vitense 1953, Spiegel 1971b). 
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If we proceed by the expedient of writing 1-1 for derivatives, lump to
gether terms that seem to be of comparable magnitude, and drop the pressure 
and time derivatives, we can write by inspection from 1.4 and 1 .5, 

and 

where 

gaUl = p(Re + l)w 

(aT g ) 
w - + - 12 = ,,(Pe + 1)0 

az Cp 

wi 
Pe=-, 

" 

wi 
Re =

p 

8.1 

8.2 

8.3 

These equations have been written here in dimensional form since that is 
the usual practice in the literature, and are to be solved in connection with 
1.8. 

The dimensionless ratios Pe and Re are known as the Peelet and Reyn
olds numbers and measure the ratio of turbulent diffusivity to the two 
molecular diffusivities of the convection problem. Convection differs from 
other turbulence problems in that no velocities are externally prescribed, 
hence Pe and Re are derived rather than imposed quantities. It is possible 
to make estimates for them if we take for w a characteristic free-fall time 
through the fluid, namely 

Then (R )1/2 
Re,......, -

(1 

8.4 

8.5 

(These estimates provide a qualitative guide, and more precise values differ 
with differing states of motion.) This shows that under astrophysical condi
tions we expect ("onvection to be turbulent since Re»103, but that in stellar 
envelopes where" may be large, turbulent transfer does not necessarily dom
inate radiation transfer everywhere since «(jR)l/2 is not always large. 

A few further steps are needed to put these equations in the usual form 
used by astrophysicists. We introduce a-l == T, which holds for a gas. Let 

ao a _ 

0= 1- = 1- (T - T) 
az az 

8.6 

and take Re»1 everywhere. Then the equations are readily rearranged into 
the form used for stellar models with the notation r = Pe (Vi tense 1953). 
There are some differences in numerical coefficients, such as those which 
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arise when a more flexible approximation to the radiative diffusion term is 
used. These matters aside, it is clear that the equations presently used for 
stellar convection are essentially those used for laboratory convection in the 
mixing-length approximation. 

Leaving for Part III the question of stellar application and related mod
ifications of the theory, we may summarize the results indicated by the mix
ing-length theory for laboratory convection (Kraichnan 1962) .  If careful 
account is taken of the boundary-layer structure, the Nusselt number for 
0" large enough (0" >0. 1) and R quite large becomes N"'(R/1S00)1/3, where 
the constants in this and the succeeding ,results are estimated from a variety 
of empirical data and theoretical calculations. For low u ( <0.1) ,  N""'(uR/ 
70)1/3, where uR must be large ( > 300) . 

An important feature of the standard mixing-length theory as described 
here is that it includes the effect of small-scale motions only through their 
damping of the large-scale motions. In turn, these large-scale motions are 
driven only by differential buoyancy forces, and the mixing-length theory 
chooses at eacp. position a preferred scale of motion l. Near the boundaries, 
l becomes small and at some distance from the boundary, a local Rayleigh 
number computed with l instead of d is ""103• For distances to the wall less 
than this, no motions can be strongly excited by the buoyancy, and conduc
tion becomes the dominant mode of transport. This distance then is the,thick
ness of the thermal boundary layer which we saw in Section 3 is ro.Id/ N. 
Hence N is found by saying that the Rayleigh number computed for a scale 
d/ N is R/ W and this should be ""Re. From this we find N ",,(R/ Re)1/3. A 
modification must be added in mixing-length theory since the diffusivities 
entering into R may be turbulent diffusivities. In this model the thermal 
boundary layer is the region in which molecular (or radiative) conduction 
dominates over turbulent conduction. However, when the Prandtl number 
is small the turbulent viscosity may be larger than the molecular viscosity 
even in the thermal boundary. Hence, in general, the Rayleigh number of 
the thermal boundary layer, R/ W, should be corrected for turbulent viscos
ity. That is, the Rayleigh number of the thermal boundary layer needs 
a corrective factor v(V+Wl)-l (Spiegel 1967) which is to be evaluated at 
the edge of the boundary layer; at high Prandtl number this factor becomes 
unity. If l is proportional to the distance from the boundary layer, we must 
take l = d/ N and in analogy to 8.4 we take Wro.l [gadT d/ N]1/2 as the value 
for the edge of the thermal layer. (In the laboratory case we may neglect 
the correction for the adiabatic term gd/ NCp.) We find [ uR/Ro J 1 /3 

N '"  0" + (O"R/N3) 1 /2 
8.7 

More detailed arguments, allowing for geometrical factors, suggest that in  
the denominator, R should be replaced by R/ Re. We then find 
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8.8 

as the mixing-length prediction for N. This has the limits mentioned ; in 
particular for low 0", N "'(0" R)l/3, which corresponds to the astrophysical no
tion that heat transport should be independent of viscosity for low cr. At 
very large 0", 8.8 indicates that the slight dependence of N on cr is not well 
represented by a power law, but rather by a factor like ( 1 - const cr-1/2). 

At large cr, these mixing-length results agree reasonably well with ex
periment, in the sense that the power r in 3.2 seems to be tending toward 1/3 
experimentally. The lack of 0" dependence for large cr in the mixing-length 
results is also not a bad representation of the data. For low u, data are avail
able only for mercury and these are not adequate for a real test, but the data 
for crR large do seem consistent with the mixing-length predictions. Attempts 
to compare mixing-length predictions for T and f2 with experimental results 
are qualitatively acceptable for large cr but are unsatisfactory for mercury 
(cr = O.025) (Rossby 1969). The values of (CJR)1/2 studied experimentally for 
mercury are, however, not very large and the disagreement may not be 
wholly damning to the theory. This point needs further experimental scru
tiny. 

The standard mixing-length theory, as we have seen, considers the heat 
transport by motions driven by differential buoyancy forces. The motions 
which provide turbulent diffusivity are presumably dynamically excited by 
the u 'Vu terms in the equations of motion. The effect of these motions is 
normally included only as a drain on the large-scale motions, but their con
tribution to the convective transfer should also be included (Kraichnan 1962). 
In the interior of the fluid such corrections are unimportant since the gradient 
is already nearly adiabatic, but they can be of great importance in the boun
dary layer. 

The reason for the frequent omission of such corrections is that standard 
mixing-length theory asserts that at any location a specific scale of motion 
1 (normally = distance from the boundary) is dominant. Thus, the usual 
mixing-length theory would not have predicted that large eddies from the 
interior of the fluid strike the boundaries, and set up appreciable horizontal 
motions there. There is, however, evidence that this occurs in laboratory 
convection (Malkus 1954a) and it seems to be manifested on the Sun as 
supergranulation (Noyes 1967; Simon & Weiss 1968). The neglect of the 
transport at the boundary by these large-scale motions is justified normally 
since they do not carry large temperature fluctuations, having traveled 
mostly through nearly adiabatic regions. What cannot always be neglected 
is the dynamical effect of these moti�ns. 

When large eddies hit the boundaries they set up shear layers which, 
when they are intense enough, can break down into small-scale turbulent 
motions. This turbulence may be less intense than the turbulence usually 
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included in mixing-length theory, and it will not in general produce as large 
an eddy conductivity. But if this turbulent conductivity exceeds the molec
ular conductivity a marked change in boundary-layer thickness occurs. It  
must be understood, however, that there is  still a thermal boundary layer, 
whose edge now is at the place where the large eddy conductivity of buoy
ancy-driven turbulence is no longer important and the weaker conductivity 
of shear turbulence takes over. This boundary layer is a turbulent boundary 
layer which permits a greater heat transport than the laminar boundary 
layer. The details of this layer depend on the boundary conditions and the 
effect of the boundary-layer turbulence has been estimated only for the lab
oratory case (Kraichnan 1962). 

The procedure is to obtain the velocity shear at the wall by assuming a 
simple model for the eddies arising from the interior. The intensity of the 
resulting turbulence driven near the wall may be computed in analogy with 
the results available from work on shear turbulence. Such mechanically 
driven motions in the presence of a temperature gradient would transport 
heat (Prandt1 1952) and, as in ordinary mixing-length theory, the additional 
transport may be estimated. The details of the calculations are too lengthy 
for inclusion here. They give, for sufficiently large R, 

( uR )1/2 
N ",  (9 1nR) 3 

8.9 

when u is  small. (A more complicated result for large u is obtained, but the 
main factor in the expression for N in that case is R1i2.) Apart from the log
arithmic term, 8.9 is in substantial agreement with 5.2. 

A sensitive question is : when does 8.8 give way to 8.9 at small fixed u, 
as R increases? Unfortunately, the estimates for this rely heavily on high 
powers of badly known constants. It appears that for the caSe (1"",10-9, the 
transition from 8.8 to 8.9 begins at R",1024• Thus, these corrections for 
boundary-layer turbulence do not seem required under solar conditions. 
Whether they may be required under any conditions in stars is an open 
question since these turbulent corrections cannot be confirmed even for the 
laboratory case with existing data. Nevertheless, such corrections may well 
be needed for stellar convection (Spiegel 1971a) and the problem will be 
further discussed in Part III .  

Perhaps the most satisfying aspect of the calculations with boundary
layer turbulence is that they permit a rationalization of the difference be
tween 5 . 1  and 5.2. The suggestion is that for large R, 5 . 1  is a reasonable rep
resentation until the large-scale motions become turbulent in the thermal 
boundary layers associated with 5. 1 .  The point at which this happens de
pends on R in a moderately complicated way. Once the boundary-layer tur
bulence starts, the heat transfer should then depend on d since it is an im
portant factor in the large-scale interior velocities, as 8.4 indicates. Thus at 
some enormous value of R the heat transport will depend on d and indeed 
it is roughly found from J ",we where w is given by 7.4 and (J",f:!. T. 
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CONVECTION IN STARS 343 
In this new regime, the flux no longer depends on K, except perhaps log

arithmically. This comes about because what was previously a laminar 
thermal layer becomes a turbulent layer and the role of molecular conductiv
ity is taken up by turbulent conductivity. There may be in the new boundary 
layer a small laminar sublayer which accounts for the logarithmic terms, 
but without solid boundaries even the sublayer might disappear (Clauser 
1961). Of course there are more details involved, particularly for 0' > 1, but 
the main qualitative features seem to be consistent with the dimensional 
arguments. 

9. TRUNCATED EXPANSIONS 

A surprisingly effective approach to solving the equations of convection 
is the use of truncated expansions in terms of an appropriate set of basis 
functions or modes. Such a procedure is often called a Galerkin method (Reiss 
1965) though the terminology used varies depending on whether the basis 
functions depend on one or more of the independent variables. There exist 
other related approximation methods, especially those relying on variational 
approaches (Reiss 1965, Finlayson & Scriven 1966), which, in the convection 
problem, have not proved as simple to use (Roberts 1966). In the Galerkin 
and related methods one expands in functions of one or more of the inde
pendent variables to obtain an infinite set of coupled equations for the am
plitudes in the expansion. Expansion in functions of space and time, of only 
space coordinates, and of only the vertical coordinates have been considered, 
with varying degrees of success, depending on the choice and number of 
basis functions, and the techniques used in solving the reduced equations. 
The greatest effort, however, has gone into the use of basis functions depend
ing on only the horizontal coordinates. Here too a wide choice of basis is 
possible, but a promising set is comprised of the planform functions of linear 
theory. Their relevance is reinforced by the theoretical suggestion that cell 
shape is preserved even for R > Rc (Stuart 1960). The planform functions 
satisfy 2.3 and contain as a special case the trigonometric functions. They 
have the useful property that for two different wavenumbers ai and aj the 
corresponding solutions of 2 .3, J; and !;, satisfy 1;1; = 0. To each ai there cor
responds a subspace of j;, and strictly we should add a second index to indi
cate the various members of this subspace. But to keep the formulae simple, 
we shall merely let !; represent the most general linear combination of basis 
functions associated with ai wherefi2 = 1. Then we can write the expansions 
for w and () 

w(x, t) = L.!.(x, y) W.(z, t) ; 8(x, t) = L. !.(x, y)E>.(z, t) 9.1 
• 

with similar expansions for u, fl. Here, the index i is treated as discrete to 
avoid the difficulty of infinite norm associated with a continuous spectrum. 

The expansions may be introduced into 1.4, 1.5, and 1.8 and the expanded 
equations projected onto the appropriate J; in the usual way. The resulting 
equations for the amplitudes in the expansions can be distilled into equations 
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for Wi, ei, and T. For simplicity we shall here suppress terms describing 
vertical components of vorticity ; these do not alter the general form of the 
equations, which are (Gough, Spiegel & Toomre 1971),  

[ :  at - (a.2 - ai2) ] (a.2 - a.2) Wi 

1 
= - Ra.2ei - - E Ciik[WkLkijiJ.Wj + (a.Wk)MkijWj] 9.2 

iT i.k 

[at - (a.2 - ai2) lei 

and 

= - (a.T + cg ) Wi - � Ciik(Ai;ke/).wk + (2a,2ak2)W"a.E>j) 9.3 
P l .k 

atT + L wjej = a.2T 
i 

9.4 

where 

and 

a. = a/az, at = a/at 

2Ciik = i'Jii" 9.S 

9.6 

9.7 

The basic feature of these equations is that the amplitudes, or modes, 
are coupled in two ways. There are the direct or dynamical couplings whose 
strengths are mediated by the coupling constants Cii". These interactions 
give rise to the disorder in the flow that is the hallmark of turbulence. The 
other form of modal interaction, the so-called mean-field interaction, comes 
from the term ca,'/) Wi in 9.3. In turn, a,T is given by 9.4, which shows how 
T is affected by the motion. Thus all the modes may interact through the 
mean temperature. 

Consider now the most drastic truncation, in which only one mode is 
retained. The resulting equations can be integrated numerically, and for a 
wide range of parameters and initial conditions the solution tends to a sta
tionary state. However, for a given choice of the parameters, there is not a 
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CONVECTION IN STARS 345 
unique stationary solution, there being nonlinear analogues of the funda
mental and overtones (in z) of linear theory. For the one-mode case, we shall 
confine attention to the fundamental mode. 

For one steady mode the nature of the solution depends on whether the 
self-coupling constant, cm = C, vanishes or not. If iI contains at least three 
Fourier components whose wavevectors form a triangle, we will have C;;&O. 
Evidently, for rolls or rectangles we will have C=O, and this case has been 
studied extensively (Herring 1963, 1964, 1966) . For R� 00 one finds (Rob
erts 1966, Stewartson 1966) 

9.8 

for rigid boundaries and for al < Rlf4. (For a > Rlf4 no convective solutions 
exist.) As a function of al this expression has a maximum at almax,,-,(R/13)lf4, 
and for most purposes we need consider only al �al max. Hence to good ap
proximation 

9.9 

It  is interesting that as in the two-dimensional problem, the boundary con
ditions are very important ; for free boundaries N<x Rlta (Howard 1965, Her
ring 1966) . 

For cases when C;;&O but al « h max, expression 9.9 continues to hold for 
R� 00 except that A 1 is no longer ,....,0.28 but is a function of C and u (Gough, 
Spiegel & Toomre 1971) . The functional form of Al is not known analyti
cally, but for C/u < 1 we have A l" '" [3/5(2/11')6] while for C/u > I ,  
A l6 >=3/5(2/1r)4u/C. Thus, the introduction of  the self-interaction termf 
causes Nl to depend on uR for small u. 

Given these results we are left with the problem of choosing the a's and 
C's for one or more modes. Ideally, we would like to use the experiments as 
a guide, but they do not directly provide scale information at large R. N ever
theless it is possible to let al and C be functions of R and u and match the 
observed N over a fairly wide domain of R and u even with one mode. How
ever, at al max=O  (Rlt4), Nl max<x R-8(ln R) ·2, while for large enough R, the 
actual N goes up like Rlta (or faster) . Hence one mode can never describe the 
full behavior of N. Further modes will be needed at very high R and no 
experimental indication of which set of modes to choose is evident. 

In the absence of stringent experimental guides, the choice of modes must 
be dictated by additional assumptions. One that has been used is to maximize 
N with respect to a and C. For moderate values of R this gives much too 
high a heat transport. Alternately, one might take over an idea that has 
been preferred by many astrophysicists and choose that mode which is most 
unstable according to linear theory. For large R, 11, the growth rate of linear 
theory is maximum when al <X Rlts and this gives Nl <X R* (In R)1/6, which is 
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like the law suggested by some experiments for laminar convection at 
moderate values of R( 105 - 106). 

These two methods of selecting modes suggest that at should increase 
with R while in fact the experiments (at least for R < 10·) indicate a decrease 
(Koschmieder 1969). Hence, perhaps the most reasonable procedure is to 
take at = 0(1) and to represent the more rapid increase of N with R at large 
R by adding further modes. Of course, this means that the choice of further 
modes is left open as well, and one must seek an extension of this procedure. 

The first possibility to consider when adding higher modes is to add to 
the basic mode successively more of its horizontal harmonics to obtain an 
accurate description of cellular motion. If, for example, we start with a roll ,  
h = y2 sin (atx) , and its harmonics, we will have a Fourier representation 
of nonlinear, two-dimensional cellular convection with horizontal perio
dicity ai-I. We have seen that solutions of the two-dimensional problem for 
u > R3/5 yield N ex: Rt/5. Hence the addition of higher harmonics does not pro
duce a drastic change in the heat transport calculated from one mode (at 
least for rolls at high u) and this implies that the vertical structure of mean 
quantities such as T as given by one mode is a reasonably close approxima
tion to a solution of the full equations. (The agreement is even better for 
free boundaries in which case one mode gives Rl/a.) On the other hand, the 
horizontal structure implied by the one-mode approximation is generally not 
at all like that of the full two-dimensional solution, which suggests the exis
tence of rising and descending plumes. Thus, the modal expansion may well 
be useful for computing mean structures in a convection layer in spite of 
its gross misrepresentation of the horizontal variations. 

If, as is suggested by this comparison, the lower harmonics are not the 
most important additional modes to introduce, which are? Presumably, the 
rule used to choose the first mode should be used to choose successive modes. 
Thus the second mode might be that: which is most unstable according to 
linear theory, based on the conditions existing with one mode. Or the second 
wavenumber a2 might be chosen to be of order unity in terms of the vertical
length scale introduced by the first mode; this would imply a2 = O(Nl) since 
the boundary layer has thickness dl Nl. We should also note that once two 
modes are retained, another option is open : the second mode may be used 
as a perturbation to study the stability of the first mode. In principle this 
may be a way to help select the preferred first mode, but in practice if the 
nonlinear stability problem with two modes is studied, no clear choice is in
dicated. We must therefore adapt one of the ad hoc selection procedures 
and this is a weakness of the Galerkin procedure in convection. That the 
difficulty becomes less serious as more modes are introduced may be seen by 
estimating Nn , the Nusselt number computed from n modes. 

Consider first the case of only Fourier modes; these have Ciii = O. Then 
if we add more and more modes, so long as they are not harmonically related, 
we would obtain an approximation to Equations 1.4-1.8 with the terms 
u ·Vu and u ·ve - u  ·ve neglected. The neglect of these terms is often called 
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the mean-field or weak-coupling approximation (Spiegel 1967) . I t can be ex
pected to hold only for very large (T as indicated by the agreement of the one
mode roll solution and the two-dimensional theory. In that limit, the u ·Vu 
term is negligible, but there seems no obvious reason to omit u ·VB - u ·VB. 

Of course, this term vanishes for one mode with C = O, and since the observed 
motion is two-dimensional for large (T and R � 10 Re, the approximation 
should work well in that domain of parameter space. At higher R it should 
continue to hold approximately since the term waz't acts qualitatively like 
u ·VB. Part of the reason for this is that for T independent of time the sta
tistically steady solutions of the mean-field equations must be stationary 
(Spiegel 1962a) . 

To estimate the effect of higher modes we assume that a rule for choosing 
the first mode has been adopted. In general, for large R, such a rule may be 
expressed as al = k1R", where JL � 1/4 and kl may depend on (T. (We might 
also include a factor involving In R.) Then, for this mode, we have from 9.9, 

9.10 

where A�A l(5ak12)1/6 and a = liS (2p +l) .  For the second wavenumber let 
us adopt the same prescription, based on the length unit dl NI ; then a2 = k2NI 
Reff", where the effective Rayleigh number Reff, seen by the second mode is, 
crudely, �R/ N13. Here an arbitrary factor of order unity should be included 
to allow for the deviation from linearity of T in the boundary layer and for 
the lack of a rigid boundary at the edge of the boundary layer. The ratio 
k2/kl differs from unity for similar reasons. Let us ignore such corrections 
and take Ref! = R/ N 13 and k2 = k1•  Then the effect of the second mode is to 
increase N by an approximate factor A Reff"(ln Reff)1/5 and for the two modes, 
the product of this factor with NI gives 

9. 1 1  

We may readily extend this procedure to n modes_with_the-result-------
� 

Nn = (1 - 3a)nf (1Sa) { A lJa(1 - 3a)-l J (lSa2) (ln R) 1 J (Sa)R } [1-(l-3a)nl J3 9. 1 2  

We see that as n i s  increased, the chief feature of the limiting N i s  a vari
ation like Rlla, except for logarithmic factors, and that this behavior does 
not depend on a. However, for fixed R, NT> tends to zero as n tends to infinity, 
which shows that some cutoff must occur if the result is to be meaningful. 
That such a cutoff exists is shown by numerical solutions which indicate 
that if a" is too large, the nth mode will not develop a detectable amplitude. 
The numerical results are consistent with the criterion that Ref! = R/ N"s""Rc 

for the cutoff n. This criterion not only permits us to estimate n�-ln In 
R/ln ( 1-3a) , but it also shows that N�(R/Rc)113, irrespective of the details 
of the theory (Malkus 1954b) . Another approach, in the case where one 
wishes to maximize N, is to choose n to maximize Nfl for fixed R (Chan 1971) . 
Curiously, this procedure gives the same cutoff for large R, so that for the 
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mean-field approximation Nmo:x CJ:.  R1/8. For the case of maximum N, accurate 
asymptotic solutions of the mean-field equations have recently been con
structed (Chan 1970). 

The recovery of the Rl/a law is an encouraging result, and the lack of 11' 

dependence is not surprising since the mean-field equations should hold only 
at large u. We must now consider more general modes with C�O. These do 
introduce a u dependence. If we proceed again with the introduction of a 
sequence of modes of higher and higher wavenumber, we will again come to 
the result 9.12 as long as the modes are not harmonically related so that 
their mutual coupling constants vanish. This time A will depend on 11' in a 
way that depends on our choice of wavenumbers. If at small 11' we expect to 
have N depend on RI1' we must choose kl so that at small 11' it varies like 11'''. 

In that case, we shall find that NO!:. (RI1')1/3 for large RI1' and for any ,1.1 <1/4. 
Thus the truncation procedure gives us the same kind of result for heat 
transport as standard mixing-length theory. Its advantage over mixing
length theory is that it can accommodate variable density, time dependence, 
and many of the other features of the problem that must be dealt with in 
stellar convection. Many of these complications have already been studied 
and will be discussed in Part II. 

Now we must ask : what happens when we deal with dynamically coupled 
modes in the truncation theory? In particular, do the dynamical couplings 
excite modes that would not have been excited by mean-field terms and do 
these excitations lead for example to an (RI1') 1/2 law at large RI1'? The question 
has not yet been answered. Numerical solutions for R up to 109 with three 
dynamically coupled modes have been found. These do seem to indicate the 
possibility of dynamical excitation. They also introduce complicated time de
pendence into the solution (Toomre 1969). However, the value of R( = 109) 
achieved to date is not high enough to show a tendency to deviate from an 
Rl/a law i indeed at that value of R the law is still being approached as R 

_____________ increases. -----One oifficuity-with-going-t6 higher R is that if we seek steady solutions, 
there is at any R and u for a given set of wavenumbers and coupling constants 
a great wealth of solutions and it is not clear which solution branch to follow. 
It is just too demanding of computing time to follow them all. On the other 
hand, even if the difficulty of choice can be alleviated by computing time
dependent solutions, the computing bill also mounts up quickly because of 
the long transients. The time-dependent problem is reminiscent of computa
tions in stellar pulsation in having one space and one time dimension; how
ever, for three modes we must deal with a system of 20th order in the spatial 
derivatives. The problem can be done with existing machines, but it is dif
ficult. It may well be possible to extract the main results for dynamically 
coupled modes analytically as has been done for the modes with only self
coupling and mean-field interactions. This problem has not been attempted 
and it is clearly of great analytical complexity. 

An alternate procedure is to keep just a few (one to three) modes and add 

A
nn

u.
 R

ev
. A

st
ro

n.
 A

st
ro

ph
ys

. 1
97

1.
9:

32
3-

35
2.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

n 
D

ie
go

 o
n 

02
/0

3/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



CONVECTION IN STARS 349 
terms based on turbulence theory (crude or refined) . This would permit a 
reasonably accurate handling of many of the features of stellar convection. 

10. TURBULENCE THEORIES 
The development of the statistical theory of turbulence has been pro

ceeding quite rapidly, the recent developments being largely dominated by 
improved approximations for highly turbulent flows (Kraichnan 1970, Orszag 
1970, Saffman 1968) . The approximation techniques are usually developed in 
terms of turbulent spectra and produce equations, which, though much easier 
to solve than the original equations of motion, pose great calculational diffi
culties. In particular, one such approximation scheme, the direct interaction, 
has been applied to the Boussinesq equations for convection (Kraichnan 
1964) . The numerical solution of these equations has recently been accom
plished for the case of free boundaries with R:::; 104 and u = 00 (Herring 1969). 
Remarkably enough the solutions are almost identical to those obtained for 
the �ean-field equations with one mode. The extension of these solutions to 
higher R and lower u is difficult, but feasible, and it will be of great interest to 
see how far such extensions can be carried. I t should be stressed that this ap
proach leaves no arbitrary parameters. 

The use of approximations from turbulence theory has also been applied 
to the case of very low (j with rather bewildering results : the solutions grow 
in amplitude without limit (Herring 1970). This may be a peculiarity of the 
free-boundary conditions used in connection with a particular limiting form 
of the Boussinesq equations for low q (Spiegel 1962b) , but the matter has 
yet to be resolved. 

There has also been a renaissance of phenomenological theories, many 
of which are more sophisticated than the standard mixing-length theory 
(Crow 1968, Lumley 1970, Nee & Kovasznay 1969, Parker 1969, Saffman 
1970). The term phenomenological is sometimes used pejoratively in turbu
lence theory; here it is not. It simply implies that the approach used is not 
intended to be completely deductive and is based to varying degrees on some 
physical picture of the inner workings of turbulence. Nor does it follow that 
the equations in a phenomenological approach are easy to solve, though 
usually they are easier to solve than the full equations. The disadvantage of 
these theories for astrophysical purposes is that, like mixing-length theory, 
they normally contain disposable parameters. Values for these parameters 
determined in the laboratory may not be applicable to stars. But this is a 
question to be faced when these new approaches are applied to convection ; 
for the present they simply represent a trend of whkh the astrophysicist 
need only be aware. 

11. CONCLUSION 
Not everyone who works on convection would agree with the assessments 

made of the various approaches discussed here. But the discussion as given 
does seem to bring out certain conclusions and these are : 
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1. The mixing-length theory, for all the criticisms leveled at it, has been 
qualitatively successful in predicting convective heat transfer. The form 
used for stellar convection however seems to be incomplete for very strong 
convection, and additional ingredients will be suggested in Part III. In any 
case it is difficult to use the theory for many special effects of astrophysical 
interest. 

2. The procedure of maximizing the heat transfer is quite promising and 
gives Euler equations that seem to represent the flow qualitatively. Hitherto, 
these Euler equations have not contained dynamical couplings and this is 
the key to their tractability. If constraints could be added to the maximi
zation problem which bring out the PrandtI-number dependence, the method 
will have great promise for stellar convection. Whether this can be done 
without enormous complications in the Euler equations remains to be seen. 

3.  The truncated modal expansions provide a reasonably accurate and 
flexible approach to the problem. They can readily accommodate large den
sity variation, time dependence, and other difficulties of the stellar case. As 
yet, for more than one mode, they must be solved numerically, if the dynami
cal couplings are to be treated with acceptable accuracy. Whether these 
couplings will adequately describe boundary-layer turbulence remains moot. 
To settle this it may yet be necessary to further approximate the dynamical 
couplings. 

4. The statistical theories of turbulence are beginning to provide divi
dends and will certainly give answers in the nextfew years. These results are 
awaited eagerly although they will oblige interested parties to master this 
very difficult discipline. 
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